Roger Smith

2021-12-11

How to find the trigonometric form of a complex number?

Beverly Smith

Beginner2021-12-12Added 42 answers

Trigonometric Form of a Complex Number. The trigonometric form of a complex number z=a+bi is. $z=r(\mathrm{cos}\theta +\mathrm{sin}\theta )$ , where r=|a+bi| is the modulus of z, and $\mathrm{tan}\theta =ba$

SO, let the complex number be z=x+yi, polar form is$(r;\theta )$

$r=\left|\sqrt{{x}^{2}+{y}^{2}}\right|$

$\theta =\mathrm{arctan}\left(\frac{y}{x}\right)$

Thus, trigonometric form is$r(\mathrm{cos}\theta +i\mathrm{sin}\theta )$

SO, let the complex number be z=x+yi, polar form is

Thus, trigonometric form is

Suhadolahbb

Beginner2021-12-13Added 32 answers

The trigonometric form of a complex number z=a+bi is

Thus, trigonometric form is$z=r(\mathrm{cos}\theta +i\mathrm{sin}\theta )$

Thus, trigonometric form is

Find an equation of the plane. The plane through the points (2, 1, 2), (3, −8, 6), and (−2, −3, 1), help please

A consumer in a grocery store pushes a cart with a force of 35 N directed at an angle of $25}^{\circ$ below the horizontal. The force is just enough to overcome various frictional forces, so the cart moves at a steady pace. Find the work done by the shopper as she moves down a $50.0-m$ length aisle.

??What is the derivative of $\mathrm{arcsin}\left[{x}^{\frac{1}{2}}\right]$?

What is the derivative of $y=\mathrm{arcsin}\left(\frac{3x}{4}\right)$?

Determine if the graph is symmetric about the $x$-axis, the $y$-axis, or the origin.$r=4\mathrm{cos}3\theta $.

How to differentiate $1+{\mathrm{cos}}^{2}\left(x\right)$?

What is the domain and range of $\left|\mathrm{cos}x\right|$?

How to find the value of $\mathrm{csc}74$?

How to evaluate $\mathrm{sec}\left(\pi \right)$?

Using suitable identity solve (0.99)raised to the power 2.

How to find the derivative of $y=\mathrm{tan}\left(3x\right)$?

Find the point (x,y) on the unit circle that corresponds to the real number t=pi/4

How to differentiate ${\mathrm{sin}}^{3}x$?

A,B,C are three angles of triangle. If A -B=15, B-C=30. Find A , B, C.

Find the value of $\mathrm{sin}{270}^{\circ}$.