Marla Payton

## Answered question

2021-12-28

Eliminate between the following equations:
$\left\{\begin{array}{c}\mathrm{sin}\theta +\mathrm{sin}\varphi =x\\ \mathrm{cos}\theta +\mathrm{cos}\varphi =y\\ \mathrm{tan}\frac{\theta }{2}\mathrm{tan}\frac{\varphi }{2}=z\end{array}$
What Ive

### Answer & Explanation

Cassandra Ramirez

Beginner2021-12-29Added 30 answers

By sum to product and product to sum formulas we have
$\left\{\begin{array}{c}\mathrm{sin}\theta +\mathrm{sin}\varphi =2\mathrm{sin}\left(\frac{\theta +\varphi }{2}\right)\mathrm{cos}\left(\frac{\theta -\varphi }{2}\right)=x\\ \mathrm{cos}\theta +\mathrm{cos}\varphi =2\mathrm{cos}\left(\frac{\theta +\varphi }{2}\right)\mathrm{cos}\left(\frac{\theta -\varphi }{2}\right)=y\\ \mathrm{tan}\frac{\theta }{2}\mathrm{tan}\frac{\varphi }{2}=\frac{\mathrm{cos}\left(\frac{\theta -\varphi }{2}\right)-\mathrm{cos}\left(\frac{\theta +\varphi }{2}\right)}{\mathrm{cos}\left(\frac{\theta -\varphi }{2}\right)+\mathrm{cos}\left(\frac{\theta +\varphi }{2}\right)}=z\end{array}⇒\left\{\begin{array}{c}2ab=x\\ 2cb=y\\ \frac{b-c}{b+c}=z\end{array}$
and since ${a}^{2}+{c}^{2}=1$ we obtain
$b=±\frac{12}{\sqrt{{x}^{2}+{y}^{2}}}$
$c=±\frac{y}{\sqrt{{x}^{2}+{y}^{2}}}$
and then
$z=\frac{±\frac{12}{\sqrt{{x}^{2}+{y}^{2}}}\mp \frac{y}{\sqrt{{x}^{2}+{y}^{2}}}}{±\frac{12}{\sqrt{{x}^{2}+{y}^{2}}}±\frac{y}{\sqrt{{x}^{2}+{y}^{2}}}}=\frac{{x}^{2}+{y}^{2}-2y}{{x}^{2}+{y}^{2}+2y}$

Joseph Lewis

Beginner2021-12-30Added 43 answers

Write $u=\mathrm{tan}\frac{\theta }{2},v=\mathrm{tan}\frac{\varphi }{2}$. Then we get
$\left\{\begin{array}{c}2\left(u+v\right)\left(1+uv\right)=x\left(1+{u}^{2}\right)\left(1+{v}^{2}\right)\\ 2-2{u}^{2}{v}^{2}=y\left(1+{u}^{2}\right)\left(1+{v}^{2}\right)\\ uv=z\end{array}$
Now setting s=u+v and using the third relation, we obtain
$\left\{\begin{array}{c}2s\left(1+z\right)=x\left(1-2z+{z}^{2}+{s}^{2}\right)\\ 2\left(1-{z}^{2}\right)=y\left(1-2z+{z}^{2}+{s}^{2}\right)\end{array}$
Dividing, we obtain the relation $s=\frac{x\left(1-z\right)}{y}$, which youve

karton

Expert2022-01-08Added 613 answers

Hints
Writing $\theta =2p,\varphi =2q$
We have
$\frac{\mathrm{sin}\left(p+q\right)}{x}=\frac{\mathrm{cos}\left(p+q\right)}{y}=±\frac{1}{\sqrt{{x}^{2}+{y}^{2}}}$
Using this one can find $\mathrm{cos}\left(p-q\right)$
Now use
$\frac{z-1}{z+1}=\dots =\frac{\mathrm{cos}\left(p+q\right)}{\mathrm{cos}\left(p-q\right)}$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?