Show (\sin(\theta)−\cos(2\theta))^2=1+\sin(\theta)−\sin(3\theta)−\frac12\cos(2\theta)+\frac12\cos(4\theta)

pierdoodsu

pierdoodsu

Answered question

2022-01-02

Show (sin(θ)cos(2θ))2=1+sin(θ)sin(3θ)12cos(2θ)+12cos(4θ)

Answer & Explanation

kaluitagf

kaluitagf

Beginner2022-01-03Added 38 answers

Method I. Write everything in terms of sin(θ)  and  cos(θ), and then compare. Tedious, but doable.
Method II. If you know what a Fourier series is, you may determine the coefficients on the right-hand side by integration.
Method III. First expand the left by (a+b)2=a2+2ab+b2
(sinxcos(2x))2=sin2x+cos2(2x)2sinxcos(2x)
Then use the double angle formulas:
sin2x=1cos2x2,   cos2(2x)=1+cos(4x)2
and the general product to sum formula:
sinxcos(2x)=12sin(x)+sin(3x)
Louis Page

Louis Page

Beginner2022-01-04Added 34 answers

As we know the RHS, let's try to express cos2(2θ) in terms of cos(4θ)
(sinθcos2θ)2=sin2θ2sinθcos2θ+cos22θ
=sin2θ2sinθcos2θ+1+cos4θ2
Now cos2θ=12sin2θwe use this together 4sin3θ
(sinθcos2θ)2=sin2θ2sinθ+4sin3θ+12+cos4θ2
=sin2θ+sinθ(3sinθ4sin3θ)+12+cos4θ2
=sinθsin3θ+cos4θ2+112+sin2θ
=sinθsin3θ+cos4θ2+112sin2θ2
=1+sinθsin3θ+cos4θ2cos2θ2

Vasquez

Vasquez

Expert2022-01-08Added 669 answers

Apply the identities
cos4θ=2cos22θ1,    cos2θ=12sin2θ
sin3θ=sinθ(2cos2θ+1)
in simplifying the RHS
RHS=1+sinθsinθ(2cos2θ+1)12(12sin2θ)+12(2cos22θ1)
=sin2θ2sinθcos2θ+cos22θ
=(sinθcos2θ)2=LHS

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?