If &#x03B1;<!-- α --> + &#x03B2;<!-- β --> + &#x03B3;<!-- γ --> = &#x03C

Isaiah Farrell

Isaiah Farrell

Answered question

2022-05-26

If α + β + γ = π 2 ,, then prove that
( 1 tan α 2 ) ( 1 tan β 2 ) ( 1 tan γ 2 ) ( 1 + tan α 2 ) ( 1 + tan β 2 ) ( 1 + tan γ 2 ) = sin α + sin β + sin γ 1 cos α + cos β + cos γ
( 1 tan α 2 ) ( 1 tan β 2 ) ( 1 tan γ 2 ) ( 1 + tan α 2 ) ( 1 + tan β 2 ) ( 1 + tan γ 2 )
= 1 tan α 2 tan β 2 tan γ 2 + tan α 2 tan β 2 + tan β 2 tan γ 2 + tan α 2 tan γ 2 tan α 2 tan β 2 tan γ 2 1 + tan α 2 + tan β 2 + tan γ 2 + tan α 2 tan β 2 + tan β 2 tan γ 2 + tan α 2 tan γ 2 + tan α 2 tan β 2 tan γ 2
I am stuck here

Answer & Explanation

rass1k6s

rass1k6s

Beginner2022-05-27Added 13 answers

Hint:
1 tan α 2 1 + tan α 2 = tan π 4 tan α 2 1 + tan π 4 tan α 2 = tan ( π 4 α 2 )

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?