Solve the identy. (1+sin 2x)/(cos x+sin x)=(cos 2x)/(cos x-sin x)

Ciolan3u

Ciolan3u

Answered question

2022-09-05

Solve the identy. 1 + sin 2 x cos x + sin x = cos 2 x cos x sin x

Answer & Explanation

Penelope Powers

Penelope Powers

Beginner2022-09-06Added 12 answers

left side: cos 2 x cos x sin x = cos 2 x sin 2 x cos x sin x = ( cos x sin x ) ( cos x + sin x ) cos x sin x
= cos x + sin x
right side: 1 + sin 2 x cos x + sin x = ( cos 2 x + sin 2 x ) + 2 sin x cos x cos x + sin x ( cos 2 x + sin 2 x = 1   a n d   sin 2 x = 2 sin x cos x )
= ( cos x + sin x ) 2 cos x + sin x = cos x + sin x
Jimena Hatfield

Jimena Hatfield

Beginner2022-09-07Added 2 answers

consider the right hand side :
i.e
cos 2 x = [ cos 2 x sin 2 x ] / cos x sin x
cos 2 x cos x sin x = [ cos 2 x sin 2 x ] / cos x sin x
= ( cos x sin x ) ( cos x + sin x ) / ( cos x sin x ) a 2 b 2 = ( a + b ) ( a b )
= cos x + sin x
= ( cos x + sin x ) 2 / ( cos x + sin x )
= [ cos 2 x + sin 2 x + 2 sin x cos x ] / ( cos x + sin x )
= [ 1 + sin 2 x ] / ( cos x + sin x ) = L H S
Hence proved

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?