Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (\(sd = 4.5\) seconds) and the expected populations for an average of 7.5 seconds (\(sd = 4.2\) seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____
B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________
C) Find the p-value. Round your answer to three decimal places. p-value =__________
The table shows the population of various cities, in thousands, and the average walking speed, in feet per second, of a person living in the city.
Consider the next 1000 98% Cis for mu that a statistical consultant will obtain for various clients. Suppose the data sets on which the intervals are based are selected independently of one another. How many of these 1000 intervals do you expect to capture the corresponding value of
What is the probability that between 970 and 990 of these intervals conta the corresponding value of Y =the number among the 1000 intervals that contain What kind of random variable is Y) (Use the normal approximation to the binomial distribution)
Suppose that
Which of the following are correct general statements about the Central Limit Theorem? Select all that apply.
1. It specifies the specific shape of the curve which approximates certain sampling distributions.
2. It’s name is often abbreviated by the three capital letters CLT
3. The word Central within its name, is meant to signify its role of central importance in the mathematics of probability and statistics.
4. The accuracy of the approximation it provides, improves when the trial success proportion p is closer to
5. It specifies the specific mean of the curve which approximates certain sampling distributions.
6. The accuracy of the approximation it provides, improves as the sample size n increases.
7. It specifies the specific standard deviation of the curve which approximates certain sampling distributions.
8. It is a special example of the particular type of theorems in mathematics, which are called limit theorems.
True or false to each of the statements in parts (a) and (b), and explain your reasoning. a. Two data sets that have identical frequency distributions have identical relative-frequency distributions. b. Two data sets that have identical relative-frequency distributions have identical frequency distributions. c. Use your answers to parts (a) and (b) to explain why relativefrequency distributions are better than frequency distributions for comparing two data sets.
In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to construct a confidence interval from sample data. Let * be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean: For a two-tailed hypothesis test with level of significance a and null hypothesis