Calculus 2 Equations: Expert Solutions and More

Recent questions in Calculus 2
Calculus 2Open question
muroscamsey muroscamsey 2022-08-16

Rates of change, compounding rates and exponentiationI have a very (apologies if stupidly) simple question about rates of change that has been bugging me for some time. I can't work out whether it relates to my misunderstanding what a rate of change is, to my misapplying the method for calculating a rate of change or something else. I'm hoping somebody on here can help.
For how I define a rate of change, take as an example a population of 1000 items (e.g. bacteria). I observe this population and after an hour I count the size of the population and see that it has increased by 10% (to 1100). I might hypothesise that the population is growing at the rate of 10% per hour, and if, an hour later, I see that it has grown by 10% again (to 1,210) then I might decide to conclude that it is growing at 10% per hour.
So, a rate of change of "proportion x per hour" means "after one hour the population will have changed by proportion x". If, after 1 hour, my population of bacteria was not 1,100, and if not 1,210 after 2 hours, that would mean that the rate of change was not 10% per hour.
First question: Is this a fair definition of a rate of change?
So far so good and it's easy to calculate the population after any given time using a compound interest-type formula.
But whenever I read about continuous change something odd seems to happen. Given that "grows at the rate of 10% per hour" means (i.e. is just another way of saying) "after 1 hour the original population will have increased by 10%", why do textbooks state that continuous change should be measured by the formula:
P = P 0 e r t
And then give the rate of change in a form where this seems to give the wrong answer (i.e. without adjusting it to account for the continuously compounded growth)? I've seen many texts and courses where 10% per day continuous growth is calculated as (for my above example, after 1 day):
1000 e 1 0.1 = 1105.17
This contradicts the definition of a rate of change expressed as "x per unit of time" stated above. If I was observing a population of 1000 bacteria and observed it grow to a population of 1105 after 1 hour I should surely conclude that it was growing at the rate of 10.5% per hour.
I can get the idea of a continuous rate just fine, and it's easy to produce a continuous rate of change that equates to a rate of 10% per day as defined above (that's just ln 1.1). But I struggle to see how a rate of change that means a population grows by 10.5% in an hours means it is growing at 10% per hour. That's like saying if I lend you money at 1% interest per month I'd be charging you 12% per year.
So what's wrong here? Have I got the wrong end of the stick with my definition of a rate of change, would most people interpret a population increase of 10.5% in an hour as a 10% per hour growth rate, or is something else amiss?

Calculus 2Open question
Flambergru Flambergru 2022-08-14

What is the derivative of y = 6 x y

When you are dealing with any Calculus 2 homework, it is vital to have a look at the various questions and answers that will help you see whether you are correct in your approach to finding solutions. Even if you are dealing with analytical aspects of Calculus 2, it will be helpful as you are looking at provided equations and learn how the answers relate to original questions and problems specified.

Do not be afraid to take a look at the basic integration and related application if Calculus 2 does not sound clear or start with the Calculus 1 first.