Understanding Complex Numbers - Examples and Equations

Recent questions in Complex numbers
Lexi Holmes 2023-03-27

How to write the expression ${6}^{\frac{3}{2}}$ in radical form?

i6ch5i6ns3op3 2023-02-25

Seventy eight and two hundred seventeen thousandths can be written as:A) 78.217B) 78.201C) 7.217D) 78.217

Elise Griffith 2023-02-15

What is the conjugate of a fraction?

markezop78 2023-02-09

Which term of the progression 20,19 1/4,18 1/2,17 3/4..is the first negative term?

Jaycee Cox 2023-02-02

What is the sum of the first 50 natural numbers? A) 2550B) 1275C) 3000D) 3250

Skylar Greer 2022-12-26

What are the prime numbers between 20-30?

Paityn Rangel 2022-12-16

$75\mathrm{%}$ of what number is 15

goorst9Bi 2022-11-24

Integration By Parts (Logarithm)$\int \left(2x+3\right)\mathrm{ln}\left(x\right)dx$My attempts,$=\int \left(2x\mathrm{ln}\left(x\right)+3\mathrm{ln}\left(x\right)\right)dx$$=2\int x\mathrm{ln}\left(x\right)dx+3\int \mathrm{ln}\left(x\right)dx$For $x\mathrm{ln}\left(x\right)$, integrate by parts,then I got$={x}^{2}\mathrm{ln}\left(x\right)-\int \left(x\right)dx+3\int \mathrm{ln}\left(x\right)dx$$={x}^{2}\mathrm{ln}\left(x\right)-\frac{{x}^{2}}{2}+3\int \mathrm{ln}\left(x\right)dx$For $\mathrm{ln}\left(x\right)$, integrate by parts, then I got$={x}^{2}\mathrm{ln}\left(x\right)-\frac{{x}^{2}}{2}+3x\mathrm{ln}\left(x\right)-3\int 1dx$$={x}^{2}\mathrm{ln}\left(x\right)-\frac{{x}^{2}}{2}+3x\mathrm{ln}\left(x\right)-3x+c$$=\frac{1}{2}x\left(-x+2\left(x+3\right)\mathrm{ln}\left(x\right)-6\right)+c$But the given answer in book is ${x}^{2}\mathrm{ln}\left(x\right)-\frac{{x}^{2}}{2}+\frac{3}{x}+c$. What did I do wrong?

Makayla Eaton 2022-08-04

Let z be a complex number such that the absolute value of (z-1) is equal to 2. Show that z * (the conjugate of z) - z - (the conjugate of z) is equal to 3.

Jaxson Mack 2022-08-02

A polynomial f(x) with real coefficients and leading coefficient 1 has the given zero and degree. Express f(x) as a product of linear and/or quadratic polynomials with real coefficients that are irreducible over ℝ.7 + 8i;    degree 2

Ramon Powell 2022-03-19

Plot the complex number. Then write the complex number in polar form. Express the argument in degrees.13 + 13iPlot the complex number. Write the complex number z= 13 + 13i in polar form.

Jacob Stein 2022-02-14

Graphing Complex Numbers In Exercises 65–68, sketch the graph of all complex numbers z satisfying the given condition

balastantpef 2022-02-13

To divide complex numbers, multiply the numerator and denominator by the complex _________ of the _________.

Kelsie Cantu 2022-02-13