# Master Solving Infinite Series with Our Expert

Recent questions in Series

## How to find the sum of finite geometric series?

Dominic Woodward 2022-12-19

## Solve:$\sum _{i=3}^{6}\left(2i-3\right)$

smekkinnZuG 2022-11-25

## Is$\sum _{n=2}^{\mathrm{\infty }}\mathrm{log}\left(1+\frac{\left(-1{\right)}^{n}}{\sqrt{n}}\right)$convergent?

NormmodulxEE 2022-11-23

## What is the result of$\sum _{i=1}^{\mathrm{\infty }}\frac{1}{\left(2i-1{\right)}^{2}}$

Kale Sampson 2022-11-21

## Prove that $|\frac{1}{n}-\frac{1}{2n}-\frac{1}{2n+2}|<\frac{1}{{n}^{2}}$

django0a6 2022-11-21

## Calculating a sum of the series $\sum _{n=1}^{\mathrm{\infty }}\frac{1}{{2}^{n-1}}$

Yaretzi Mcconnell 2022-11-20

## Could you please explain how come:$\sum _{i=1}^{\mathrm{\infty }}\left(0.5{\right)}^{i+1}\left(i+1\right)=2$

Jonas Huff 2022-11-19

## Knowing that $\left({a}_{i}{\right)}_{i\ge 1}$ prove that $\mathrm{\forall }n\in \mathbb{N}$$\sum _{i=1}^{n}r{a}_{i}=r\left(\sum _{i=1}^{n}{a}_{i}\right)$

Jaslyn Sloan 2022-11-19

## Check Convergence of $\sum _{n+1}^{\mathrm{\infty }}\left(-1{\right)}^{n}\ast \left(\frac{{e}^{n}}{n!}\right)$

Amy Bright 2022-11-18

## Calculating the sum of $f\left(x\right)=\sum _{n=0}^{\mathrm{\infty }}n\cdot {2}^{n}\cdot {x}^{n}$

inurbandojoa 2022-11-17

## How prove that ${x}_{1}={x}_{2000}$ implies ${x}_{2}\ne {x}_{1999}$, where ${x}_{n+2}=\frac{{x}_{n}{x}_{n+1}+5{x}_{n}^{4}}{{x}_{n}-{x}_{n+1}}$ ?

Kale Sampson 2022-11-14

## Suppose ${f}_{n}\left(x\right)={x}^{n}-{x}^{2n}$. Dose the sequence of functions $\left\{{f}_{n}\right\}$ converge uniformly?

perlejatyh8 2022-11-12

## Evaluating a summation of inverse squares over odd indices$\sum _{n=1}^{\mathrm{\infty }}\frac{1}{{n}^{2}}=\frac{{\pi }^{2}}{6}$

Ty Gaines 2022-11-08

## Does $\sum _{k=1}^{\mathrm{\infty }}k\left({p}^{\frac{\left(k-1\right)k}{2}}-{p}^{\frac{\left(k+1\right)k}{2}}\right)$ converge?

Brooke Richard 2022-11-07

## Is it true that

Nicholas Hunter 2022-11-06

## Evaluate a sum with binomial coefficients: $\sum _{k=0}^{n}\left(-1{\right)}^{k}k{\left(\genfrac{}{}{0}{}{n}{k}\right)}^{2}$

InjegoIrrenia1mk 2022-11-06