The accompanying data on y = normalized energy \(\displaystyle{\left[{\left(\frac{{J}}{{m}^{{2}}}\right)}\right]}\) and x = intraocular pressure (mmHg) appeared in a scatterplot in the article “Evaluating the Risk of Eye Injuries: Intraocular Pressure During High Speed Projectile Impacts” (Current Eye Research, 2012: 43-49), an estimated regression function was superimposed on the plot.
\(\begin{array}{|c|c|}\hline x & 2761 & 19764 & 25713 & 3980 & 12782 & 19008 & 19028 & 14397 & 9606 & 3905 & 25731 \\ \hline y & 1553 & 14999 & 32813 & 1667 & 8741 & 16526 & 26770 & 16526 & 9868 & 6640 & 1220 & 30730 \\ \hline \end{array}\)
Here is Minitab output from fitting the simple linear regression model. Does the model appear to specify a useful relationship between the two variables?
\(\begin{array}{|c|c|}\hline \text{Predictor Coef SE Coef T P Constant} & -5090 & 2257 & -2.26 & 0.048 \\ \hline \text{Pressure} & 1.2912 & 0.1347 & 9.59 & 0.000 \\ \hline \end{array}\)
\([S=3679.36, R-Sq = 90.2\%, R-Sq(adj)=89.2\% ]\).
a) Which of the following properties distinguishes the standard normal distribution from other normal distributions?
-The mean is located at the center of the distribution.
-The total area under the curve is equal to 1.00.
-The curve is continuous.
-The mean is 0 and the standard deviation is 1.
b) Find the probability
c) Find the probability
Make a scatterplot of the data and graph the function
Find the following probabilities for the standard normal distribution
State the slope and y-intercept of the equation.
Scatterplots Which of the scatterplots below show
a) little or no association?
b) a negative association?
c) a linear association?
d) a moderately strong association?
e) a very strong association?