# Solve Precalculus Problems | Expert Help Available

Recent questions in Precalculus
Rose Weaver 2023-02-25

## What is meant by F+V=E+2 ?

i6ch5i6ns3op3 2023-02-25

## Seventy eight and two hundred seventeen thousandths can be written as:A) 78.217B) 78.201C) 7.217D) 78.217

Phoebe Ware 2023-02-25

## How to prove $\mathrm{cos}\left(\frac{2\pi }{3}\right)$?

engomavaw10b 2023-02-25

## How to calculate $\mathrm{sin}\left(-150°\right)$?

nestalno4szl 2023-02-25

## How to show that the point (7/25, 24/25) is on the unit circle?

obklopit90r9 2023-02-25

## What is the terminal point of a vector?

Rose Weaver 2023-02-24

## How to find the value of $\mathrm{tan}240°$?

mfausantosngcl 2023-02-24

## Write the complex number $8\left(\mathrm{cos}30+i\mathrm{sin}30\right)$ in standard form?

laminarskq2p 2023-02-24

## The measure of an angle is five times its complement. The angle measures (a) ${25}^{\circ }$ b) ${35}^{\circ }$ c) ${65}^{\circ }$ d) ${75}^{\circ }$

Damion Ellis 2023-02-23

## The number of solutions of $\mathrm{cos}\left(2\theta \right)=\mathrm{sin}\left(\theta \right)$ in $\left(0,2\pi \right)$ is...

compatidakjjn 2023-02-23

## When light enters from air to glass the angle of incidence and refraction in air and glass are 45° and 30° respectively. Find the refractive index of glass.

ddioddefn5cw 2023-02-22

## How to find the value of $\mathrm{sin}\left(-120\right)$?

ddioddefn5cw 2023-02-22

## ${P}_{1}\left(x\right)=3{x}^{2}+10x+8\phantom{\rule{0ex}{0ex}}{P}_{2}\left(x\right)={x}^{3}+{x}^{2}+2x+t$ are two polynomials. When one of the factors of ${P}_{1}\left(x\right)$ divides ${P}_{2}\left(x\right)$, 2 is the remainder obtained. That factor is also a factor of the polynomial ${P}_{3}\left(x\right)=2\left(x+2\right)$ Find the value of ‘t’.

Tyrell Singleton 2023-02-22

## The value of the expression $\left({\mathrm{tan}}^{4}x+2{\mathrm{tan}}^{2}x+1\right){\mathrm{cos}}^{2}x$ , when $x=\frac{\pi }{12}$ is equal to $A\right)4\left(2-\sqrt{3}\right);\phantom{\rule{0ex}{0ex}}B\right)4\left(\sqrt{2}+1\right);\phantom{\rule{0ex}{0ex}}C\right)16{\mathrm{cos}}^{2}\frac{\pi }{12};\phantom{\rule{0ex}{0ex}}D\right)16{\mathrm{sin}}^{2}\frac{\pi }{12}$

gurlsweetienawx 2023-02-22

## How to find the value of $\mathrm{cos}\left(-90\right)$?

fagiolinow8xk 2023-02-22

## Let $\stackrel{\to }{A}$ be vector parallel to line of intersection of planes ${P}_{1}$ and ${P}_{2}$ through origin. ${P}_{1}$ is parallel to the vectors $2\stackrel{^}{j}+3\stackrel{^}{k}$ and $4\stackrel{^}{j}-3\stackrel{^}{k}$ and ${P}_{2}$ is parallel to $\stackrel{^}{j}-\stackrel{^}{k}$ and $3\stackrel{^}{i}+3\stackrel{^}{j}$ then the angle between vector $\stackrel{\to }{A}$ and $2\stackrel{\to }{i}+\stackrel{\to }{j}-2\stackrel{^}{k}$

Ravottidsvx 2023-02-21